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Abstract —In this paper, we consider the local structure of energy
functions for electric power networks near points (parameter values) of

incipient flutter instability. Previous work by several investigators clearly’

indicate the subtle nature of energy functions and energy-like Lyapunov
functions when the system exhibits such an instability mechanism. In fact
the question of existence of an energy function under these circumstances
has been raised. The issue is important because it is now well known that
power systems with loads contain such bifurcation points. It is shown,
herein, that a local energy function does exist in a sense consistent with
the inverse problem of analytical mechanics. However, sufficiently near
points of flutter instability the energy function for both stable and unstable
systems is not sign definite. Such an energy function can not be used as a
Lyapunov function. Nevertheless, it is possible to obtain “natural” Lya-
punov functions by combining the energy function with one or more
additional first integrals. The analysis is based on the association of the
linearized undamped power system with loads with a quadratic Hamilto-
nian system. General (universal) perturbations of the normal forms of the
degenerate quadratic Hamiltonians at such bifurcation points are derived
and lead to the stated conclusions. An example is included.

I. INTRODUCTION

OWER system operating practices have evolved so
Pthal transmission networks now function quite differ-
ently from customary usage a decade or so ago. It is not
surprising that previously uncommon, even unobserved,
network instability mechanisms have been linked to recent
power system failures in several countries, including
France, Japan, and the United States. Such events, al-
though rare, can be severely destructive. Consequently
there has emerged a renewed interest in constructing a
comprehensive, fundamental understanding of power sys-
tem stability issues. In the present environment, electric
power systems often operate close to stability limits.
Therefore, it is necessary to characterize such limits with
precision and to fully understand the associated mecha-
nisms of instability in order to assure adequate safety
margins. In this paper, we study instabilities associated
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with the movement of a pair of complex-conjugate eigen-
values into the right half plane. Although somewhat ne-
glected with respect to classical models of power systems,
there is growing evidence that this type of instability is
easily induced by load variations.

In power system direct stability analysis, the importance
of an energy function is clearly evident. Beginning with the
work of Magnusson [1] energy analysis has been a recur-
rent theme -over a span of nearly four decades. Neverthe-
less, there remain many questions about the application of
energy functions to systems with loads. Most of the discus-
sion in the literature centers on the issue of transfer
conductances in the formulation of energy-like Lyapunov
functions (for example, [2]-[5]). The essential difficulty is
the same whether constant admittance load models are
employed and load buses eliminated, or constant power
load models are employed and load buses retained.

Intrinsically more fundamental than the question of the
existence of energy-like Lyapunov functions are questions
about the energy function itself. If an energy function
exists then it is often convenient to use it as the basis for
construction of a Lyapunov function for a stable system.
Typically, such a Lyapunov function provides sharp esti-
mates of the domain of attraction of a sable equilibrium.
Indeed, the energy function can often attribute a useful
physical interpretation to the stability boundary and
thereby suggest means of evaluating stability margins, e.g.,
the PEBS method [3]. Moreover, such a Lyapunov function
can be used to study the affects of system parameter
variations on.the geometric properties of the domain of
attraction.! Should the system lose stability under param-
eter variations, the energy function, although no longer a
Lyapunov function, may provide useful information about
the mechanism of instability.

Although attempts to construct exact global energy
functions for power systems with loads have not proved

!The idea of using potential functions for the study of power system
bifurcations was first introduced by Andronov and Neimark in 1961.
They studied a three-machine system with loads confined to generator
buses, thereby rendering the dynamical model conservative and the
energy function obvious, see Aronovich and Kartvelishvili [7].
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satisfactory, various approximations have been employed
in the construction of Lyapunov functions and they have
enjoyed some success in applications. On the other hand,
local energy functions are easier to identify and they also
can provide useful information about the nature of im-
pending instability. In fact, when operating near stability
limits, they may yield satisfactory estimates of the stability
boundary and, if not, they can be useful first approxima-
tions for refined Lyapunov functions which provide im-
proved estimates. Our major goals are to characterize
flutter instability in terms of energy properties and to
develop local, energy related, parameterized Lyapunov
functions which capture the mechanism of instability.

Kwatny, Bahar, and Pasrija [5] provide a construction
for a local energy-like Lyapunov function for power sys-
tems with transfer conductances at strongly stable equilib-
ria. The term energy-like derives its legitimacy from the
fact that the function is the Jacobi first integral of an
associated Lagrangian system.? An important question is
whether it represents an energy function if the system is
unstable even though it can no longer be a Lyapunov
function. In the event of a simple divergence instability, a
single eigenvalue in the right half plane, the answer is yes.
However, the construction breaks down at points of flutter
instability, i.e., a pair of complex-conjugate roots in the
right half plane.® Thus, the function introduced in [5] can
provide no information regarding loss of stability via bi-
furcation to a limit cycle.

In this paper, we analyze the properties of energy func-
tions near bifurcation points associated with flutter insta-
bility. One important observation is that it is possible to
define, in a natural way, a (local) energy function at such
points, but it will not be sign definite. Moreover, it is not
simply a case of the energy function losing definiteness at
the point of bifurcation as is the case with a divergence
instability. In the flutter situation, all neighboring systems,
stable as well as unstable, are associated with an indefinite
energy function. Although it may appear unusual for a
stable system to be identified with an indefinite energy
function, several important examples are well known. Ob-
viously, the energy function can no longer serve as a
Lyapunov function. Nevertheless, it is possible to identify
“natural” Lyapunov functions by combining the energy
function with other characteristic functions.*

One way of establishing an energy function for a power
system is via the inverse problem of analytical mechanics.®
That is, given a set of governing differential equations,

2For further details on this viewpoint, see Bahar and Kwatny [8], [9].
Narasimhamurthi [4] shows quite clearly that the conventional notion
of an energy function is ambiguous at points of incipient flutter instabil-
ity.
4We mean first integrals of the defining differential equations to which
can be attributed a physical meaning by their association with system
sl)lr‘mmetries in accordance with Noether’s theorem. Classical versions of
this theorem can be found discussed in many texts including Arnold [10].
Extension to nonconservative and constrained dynamical systems have
been given by Vujanovic {11] and Bahar and Kwatny [12].
The inverse problem has a long history. A comprehensive reference is
the text by Santilli [13).
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determine a variational principle from which they are
attainable. The solution to this problem, if one exists,
provides, among other things, an energy function.® This is
the point of view behind the analysis in [5]. In effect, the
energy function so obtained now determines the equations
of motion. The association of a set of dynamical equations
with an energy function is generally nonunique in a funda-
mental way, even when such an association appears intu-
itively obvious. It is not surprising that two different
energy functions may produce the same set of equations.
Much more interesting is the fact that small perturbations
of these different functions can produce dynamical sys-
tems having vastly different qualitative behavior. Another
view of this nonuniqueness is the following. Consider a
dynamical system of equations with which has been identi-
fied an energy function. The set of system associated with
energy functions which are smooth distortions of the origi-
nal function may not include all neighbors of the original
system.”

In Section II we describe the classical power system
model used in our analysis and review some basic results
regarding energy functions and stability. Section III con-
tains a simple example of a three-machine system which
serves to motivate and illustrate the key concepts of the
paper. An undamped power system with loads is locally,
but nonuniquely, equivalent to a Hamiltonian dynamical
system. By this we mean that in an appropriately chosen
coordinate system the linearized power system model is
Hamiltonian. Moreover, the nonuniqueness is typically
nontrivial. In Section IV we will define and characterize
equivalence classes of Hamiltonian systems associated with
power systems at points of potential flutter instability. A
given power system model may have a representation in
more than one class. Thus it inherits the qualitative charac-
teristics of each class. By associating a Hamiltonian system
with a given power system we have identified it with an
energy function. A study of the behavior of these systems
under perturbations constitutes the remainder of Section
IV. It will be seen that only those systems associated with
an indefinite energy function can lose stability under per-
turbations. In Section V we discuss the construction of
Lyapunov functions from the quadratic first integrals asso-
ciated with the linear Hamiltonian system.

II. MoDE AND PROBLEM DEFINITION
2.1. The Classical Power System Model

Consider a fairly general power system model composed
of n+ m+ [ buses where buses i =1,- - -, n are the internal
buses of n generators, buses i=n+1,---,n+m are m
(voltage-controlled) PV load buses and buses i =n+ m +
1,---,n+ m+ 1 are I/ (constant power) PQ load buses. The

“Solution to the inverse problem produces a Lagrangian, a Hamilto-
nian, and a Jacobi first integral. Either of the latter may be considered an
energy function. The Jacobi first integral is often considered the coenergy
function.

"This point of view is dramatically exemplified by Narasimhamurthi
(41 :
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interconnecting network is considered to be the equivalent
reduced network resulting from the elimination of the
constant admittance loads and network internal buses. The
dynamical equations of motion may be written®

M§+Ds+f1(8’¢’V9p')=O (213)
£(8,6,V,1)=0 (2.1b)

where M denotes the diagonal matrix of generator rotor
inertias, D the damping matrix, § the n-vector of genera-
tor internal bus angles, ¢ the m + lvector of load bus
angles, V' the l-vector of PQ load bus voltage magnitudes,
and p a k-vector of network and load parameters. The
functions fl: Rn+m+2!+k_) R" and f2: Rn+m+21+k_)
R™*2! are the usual load flow relations.

In the event that the network does not contain PV or PQ
loads the variables ¢, ¥ are absent as is (2.1b). Also if
D =0, (2.1) reduces to

M8+ f,(8,1) =0. (2.2)

Furthermore, if the reduced network does not include
transfer conductances, then the function f,(8, 1) is deriv-
able from a potential function U($, p), i.e.,

aU
fi(8,p) =~ %

It is common to refer to U(§, p) as the potential energy
function and to define the energy function as

2.3)

. 1 .
E(8,8,p.)=55’M8+U(8,p.). (2.4a)
It is also possible to define the Lagrangian
. 1,
L(s,s,n)=56'M8—U(8,p). (2.4b)

Note that (2.2) may be derived via Lagrange’s equations
using the Lagrangian (2.4b) (with an appropriate dissipa-
tion function if D # 0). The energy function (2.4a) is the
Jacobi first integral associated with the Lagrange system of
(2.4b).

The arguments leading to the energy function (2.4a) for
the system (2.2) may be extended to the more general case
of the system (2.1) as described by Tsolas et al. [25]. In [25]
load buses are included but transfer conductances are not.
Indeed, the retention of load buses is intended to circum-
vent the introduction of transfer conductances, an ap-
proach suggested by Bergen and Hill [6]. In the present
work, we will be concerned with the local characterization
of energy functions. Thus our study is based on a lineariza-
tion of (2.1). The matrix parameters of the linearized
representation involve the same complexity (notably asym-
metry) regardless of the load model employed. Therefore,
our analysis is constructed to admit any mix of constant
impedance, voltage controlled and constant power loads.

For simplicity of exposition, we assume that the system
either has an infinite bus or that one degree of freedom has

8The details of the model described herein may be found in Kwatny
et al. [14]. See also Pai [15] and Anderson and Fouad [16].
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been removed by reference to a swing bus or use of center
of angle coordinates. Otherwise f(8) has a translational
symmetry which imposes various technical qualifications
which unnecessarily complicates the following discussion.
We also assume D = 0 unless otherwise stated.

2.2. Stability of Equilibria

Let (8%, ¢* V*, u*) be an equilibrium point of (2.1).
Suppose that the equilibrium point is strictly causal® in the
sense that there exist unique functions ¢(8,p), V(§, )
satisfying £,(8, (8, p), V(8, 1), p) =0 in a neighborhood
of (8%, ¢, V*, p*) with (8%, p*) = ¢* and V(8*, p*) = V*.

Under these circumstances the linearized dynamics of
(2.1) reduce to the form

M3+ DX+ Kx=0 (2.5)

where

- DALY\
K—{DSfl_[DEfl][Dsfz] D¢f2} @6)

where x = § — 0*. In general, M'=M>0and D'=D > 0.
The matrix K, however, is not typically symmetric. When
K is not symmetric it is not possible to define, even
locally, a potential function via (2.3) as a means for
composing the energy function (2.4a).

K depends on the parameter g, both explicitly through
the Jacobian matrices in (2.6) and implicitly through the
variation of the equilibrium point with p. In the absence of
damping,!? the equilibrium is stable if the eigenvalues of K
are positive and K has a complete set of eigenvectors. The
equilibrium is unstable if one or more eigenvalues of K are
negative or complex. We may monitor the stability of the
equilibrium as p varies by tracking the eigenvalues of K.
Stability is lost when any combination of the following
events occur: one or more initially positive eigenvalues of
K move onto the negative real axis, one or more pairs of
initially positive eigenvalues meet and move off the real
axis.

We employ the following terminology.

Definition 2.1: A parameter value p* corresponds to a
point of incipient instability if every sufficiently small
neighborhood of p* contains values of p # p* correspond-
ing to both stable and unstable systems (2.5). The value p*
corresponds to a point of incipient divergence instability if
the unstable systems have precisely one eigenvalue in the
right half plane and to a point of incipient flutter instability
if the unstable systems have precisely two eigenvalues in
the right half plane with nontrivial imaginary part.

Note that the terms divergence and flutter instability are
commonly used in the literature, with some ambiguity, but
with a meaning essentially consistent with our definition.
Points of incipient instability are bifurcation points. A

Further discussion of the notion of causal equilibria may be found in
Kwatny er al. [14]. See also DeMarco and Bergen [17].

‘OWLZen K is not symmetric the effect of damping is quite subtle. Some
results are given by Kwatny er al. [5].
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value p* corresponds to a point of incipient instability
only if one or more eigenvalues of K are at the origin of
the complex plane or there are nondistinct eigenvalues of
K on the positive real axis. A complete analysis of the
mechanism of loss of stability and classification of the
bifurcation requires consideration of the nonlinear contri-
butions of the function f.

An equilibrium point is regular if it is strictly causal and
if there exist unique functions 8,(p), ¢.(p), and V,(p)
SatiSfying f(ae(l"‘)s 4)8(#), (“')’ P‘) (fl? fZ), 0 in some
neighborhood of (8*, ¢*, V*, u*), with §,(p*) = 8%, ¢,(1%)
=¢* and V,(u*) = V*. An equilibrium point is not regular
only if K has one or more eigenvalues at the origin. This
case is considered by Kwatny et al. [14]. We are interested
herein in the situation whereby stability is lost because a
single pair of positive real eigenvalues of X meet and
move off of the real line. This corresponds to a conjugate
pair of system eigenvalues moving from the imaginary axis
into the right half plane, ie., a flutter instability. Such a
situation does occur in power system models with loads as
evidenced by Narasimhamurthi [4], Abed and Varaiya [18],
and Alexander [19]. We provide another example below.

Our objective is to characterize system energy functions
at bufurcation points of incipient flutter instability. We
will associate an energy function with (2.5) in a manner
consistent with the discussion following (2.2). Although
this appears to be a plausible means of defining an energy
function it by no means provides a unique result. As
we shall demonstrate, there are very often several
Lagrangians, (nontrivially) different from each other, which
produce the same equations of motion.!! It seems equally
reasonable to identify any of the corresponding Jacobi first
integrals (or, equivalently, the corresponding Hamiltoni-
ans) as the energy function.

The consequence of using any one of the alternative
energy functions will be seen to have implications that are
quite profound. The choice of an energy function carries
with it presumptions about the underlying structure of the
system that are not apparent in, and distinct from, the
equations of motion. In fact, it will be shown that different
energy functions imply différent system behaviors with
respect to perturbations.
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Fig. 1.

where g=f—c—d. Since I,=0, we obtain V,=(—1/
(e — jg))(jcV, + jdV;) and the reduced bus relations are

L Cu+JjDy Gt Dy, G+ jDys 4
Iz = C12 + jD12 sz + jDzz C23 + jDzs V2
I Cis+jDy; Cyu+jDyy Cyu+ Dy || Vg

where €, =C,,=C;;=0, D;;=—(a+b), D12 a, Dy

=b, C22=¢'2€/(ez+82), Dy, = —[(a+c)e* +g*)+

4 g]/(e +g )’ Czs— Cd‘—’/(e2 + gz)’ Dy =- cdg/(e* +

2) C33 =d%/(e’ +g%), Dy=—[(b+d)e’+gY)+
] /(e + g?). The swing equations can be written:

8,+ D,,sin(8,— 8,) + D,,sin (8, — 8,)

+ C,c0s(8,— 8,)Czc08(8,—8;) =P, (3.1a)

8, + Dy,sin (8, — 8,) + Dyysin(8,— 8;)
+ Cy,c08(8,—8;) + Cyc08(8,— 8;) =P, (3.1b)

8, + D,;sin (8, — 8,) + Dy5sin (8, 8,)
+ Cyyc0s(8;,— 8,) + Csc08(8,— 8,) =P; (3.1¢)

where we have taken J;=1 and V; =1, for i=1,2,3. If we

take bus 1 as a swing bus and define the variables 8, =

8,—9,, 0,=38,—5,, then the swing equations can be re-

duced to

6, +2Dy,sin(6,) + Dysin(6,— 6,) + Dy5sin(6,)
+ Cyyc0s(0,— 8,)— C3c0s(6,) = AP,

6 +2D,;sin(6,)+ D,ysin(8,— 6,)+ D, sin(8,)

(3.2a)

+ Cncos(ﬂz— 01)—Clzcos(01)} =AP, (3.2b)
III. AN um where AP, = P,— P, and AP,=P;— P,.
We consider a simple example in order to motivate and The Jacoblan Dof, is
p. p
illust.rate the concepts developed l}erein. Cons?de.r the sys- D,f = [a tz x+y (3.3)
tem illustrated in Fig. 1. The admittance matrix is ¢ -z
I — j(a+b) ja Jb 0 |1
L _ Jja —jla+c) 0 Jje v,
Ll jb 0 —-j(b+d)y jd || W
1, 0 Je jd 3+jg]lLVa

'Note that even U(8) as defined by (2.3) is not unique. However, th15
is not the essential issue as will be evident below.
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TABLE 1

Case C3 D Di3 Dy AP APy Py 6 B A

1 0 .5 .5 .5 0 0 0 0 0 1.5+0.0

2 2 1 .5774 .5774 4.016 2.913 -1.180 1.092 .5313 1.448%0.020

3 2 1 .5774 .5774 4.034 2.894 -1.161 1.059 .5254 1.486%0.010

4 2 1 .5774 .5774 4.042 2.887 -1.155 1.047 .5236 1.5000.000

5 2 1 5774 .5774 4.072 2.857 -1.130 1.003 .5188 1.550%j0.181

C12=0,C13=0

where
a=Dy,cos(8,)+ Dyycos(6;) + Dyscos(6,—6,)  (3.4a)
z=Dy,cos(8,)— Dy3c0s(6,)] + Cyysin(8,—6;)  (3.4b)

x = — Dycos (8, — 6,)+ { Dyycos(8,) + Dyzcos(6;)} /2
+{Cyysin(6;)+ Cyysin(6,)} /2 (3.4¢)
y={Dycos(8,)- Dy,c08(8;)}/2+ Cyysin (6, — 6,)
+{=Cy,sin(8,) + Cyysin(6,)} /2. (3.4d)
Notice that the eigenvalues of Dyf are

7\=ai[zz+x2—y2]1/z

(3.5)

so that a complex-conjugate pair occurs when z2 + x* < y°.
Note that if C;,=C;;=Cy; and AP;=0, AP,=0, then
(8,,9,) = (0,0) is an equilibrium point and D, f has a pair
of eigenvalues located at A = a= Dy, + Di3+ Djs.

In Table 1, we illustrate various steady-state conditions
for different system parameter values. Notice the change in
eigenvalues of D,f as we progress from Case 1 through
Case 5. The sequence of Cases 2—5 shows a clear transition
from a stable to an unstable system. The equilibria of
Cases 4 and 5 are unstable. Notice that Cases 1 and 4
correspond to bifurcation points, that is points of incipient
flutter instability. It is interesting to note that in several
computational experiments in which the system parame-
ters (AP,, AP,) were varied we could not locate unstable
neighbors to Case 1. However, (3.5) indicates that with
appropriate choices of parameters x, y, z they do exist. We
will see later that Case 1 is generic in three (or more)-
parameter families. Case 4 is much different. We easily
find unstable neighbors. This case is generic in one-param-
eter families.

IV. ENERGY FUNCTIONS AND HAMILTONIANS
4.1. Energy Functions and Symmetrizing Matrices

When a dynamical system possesses only nonconserva-
tive affects of dissipative type, then it is common to
associate with it the energy function of its conservative
counterpart. With other types of nonconservative effects,
such as the circulatory forces induced by transfer conduc-
tances, this procedure is not meaningful. How then should
the energy function be defined? The essential issues are
most easily described in terms of the linearized system.
In this case a partial answer has been given by Kwatny
et al. [5).
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In the absence of damping, the linearized classical model
is of the form

M5+ Kx=0 (4.1)

where M, K are real and M is symmetric and positive
definite. If K has real eigenvalues and a complete set of
eigenvectors, then there exists a symmetric, positive defi-
nite matrix S such that SM™!K is a symmetric matrix.
Furthermore, the equation of motion (4.1) is derivable
from a Lagrangian

L(%,x)=(1/2){x'Sx—x'SM'Kx} (4.2a)

and has associated with it a Jacobi first integral, or energy
function E(%,x), and a Hamiltonian H(p, x), respec-
tively,

E(%,x)=(1/2){x'S% + x'SM~'Kx}
H(p,x)=(1/2){p'S~'p+xSM~'Kx},
where p=S8~1%. (4.2c)

It is important to note that the symmetrizing matrix §
(and hence the Lagrangian, energy function and Hamilto-
nian) is not unique. In fact, let U be the transformation
matrix composed of the eigenvectors of M ~1K, then the
symmetrizing matrix can always be written

S=USU', = =diag(s,,  ,0,)

where 3 is an arbitrary nonsingular diagonal matrix. Note
also that S need not be positive definite although it may
always be chosen so.

In the event that K has complex eigenvalues (in which
case the origin of system (4.1) is unstable) the symmetriz-
ing matrix is no longer available as a means of construct-
ing an energy function. However, a simple computation
shows that the eigenvalues of the second-order system (4.1)
occur in groups of four types: real pairs (o, — o), purely
imaginary pairs (jw, — jw), quadruples (+ 0, + jw), and
zero eigenvalues. It follows that the linear system @4.1) is
equivalent to a Hamiltonian system (with quadratic
Hamiltonian) under a linear transformation of coordi-
nates. This is true for any real matrix K, regardless of the
location of its eigenvalues. Thus, it makes sense to identify
the energy function of (4.1) with the Hamiltonian function
of an associated Hamiltonian system. We explore this
point of view below.

(4.2b)

4.2. Normal Forms of Quadratic Hamiltonians

Our purpose is to examine the structure of the energy
function for general second-order systems of the type (4.1)
by applying standard results for Hamiltonian systems.
Consider a dynamical system characterized by a quadratic
Hamiltonian in the form

1
H(y)=7y'0r (4.3a)
where y = (g, *> 4 P1'-*» P,)' and the dynamical
equations are

y=JQy (4.3b)
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where

It is well known (see Gantmacher [20, chap. 4]) that a
linear transformation y = Tz preserves the canonical struc-
ture of the Hamiltonian system (4.3) if and only if the
transformation matrix T is a generalized symplectic matrix,
ie.,

TYT=cJ, c#0. (4.4)

The constant c is called the valence of the transformation.
If ¢=1, the transformation is called univalent and the
matrix 7 is symplectic. It is reasonable then to define two
Hamiltonian systems to be equivalent if they are related by
a generalized symplectic transformation of coordinates.
Thus any Hamiltonian system of the type (4.3) belongs to
an equivalence class of Hamiltonian systems whose mem-
bers are related by generalized symplectic coordinate
transformations. Therefore, it is useful to seek normal
form representations for these classes. Arnold [21] provides
a complete classification attributed to Galin following
Williamson [22] which gives just such a normal form
characterization of quadratic Hamiltonians. An equiva-
lent classification, also developed independently from
Williamson’s fundamental papers, is given by Laub and
Meyer [23].

In the present analysis, we are interested in a very
special situation. For an undamped power system undergo-
ing load parameter variations, stability of the equilibrium
is determined by the linearized equations (4.1). For a
stable equilibrium, all of the eigenvalues are on the imagi-
nary axis. Loss of stability occurs when a pair of imaginary
eigenvalues meet and move off of the imaginary axis.
When the meeting takes place at a point jw # 0 the loss of
stability of the equilibrium is typically accompanied by the
presence of a limit cycle.!? This is the situation of interest.
Thus, we wish to analyze a transition of the eigenvalue
pattern through the sequence: (t jw,, + jw,) = (% jw)?
— (%0, + jw). To do this we consider the normal form
‘and universal perturbation of the Hamiltonian correspond-
ing to the degenerate pattern (+ jw)2.

Williamson [22] identifies four'®* nonequivalent Hamil-
tonian normal forms giving rise to this eigenvalue pattern:

H1=%{(p%+wzqf)+(p§+wzq§)] (4.52)
Hy= (st + i)~ (3 + o)) (@5)
H3=%(pf+p§)+w(q1pz—q2pl) (4.62)
H,= -%(p%+p§)+w(qlpz—qu1)- (4.6b)

2Such bifurcation points usually correspond to either subcritical or
supercritical Hopf bifurcations.

13Actually, Williamson identifies five. The additional Hamiltonian is
the same as H, with the variable subscripts interchanged.
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We point out that the elementary divisors corresponding to
the dynamical systems (4.5) are (A + jw), whereas those of
(4.6) are (A £ jw)2 Note that the Hamiltonians (4.5a) and
(4.5b) correspond to stable systems, however, in all but the
first case the Hamiltonian or “energy” function is not
definite and cannot be used as a Lyapunov function. The
Hamiltonian (4.5a) is simply the sum of two noninteract-
ing harmonic oscillators. In (4.5b) the second oscillator is
running backwards (see Abraham and Marsden [24, chap.
3]). We will return to this point later.

In general, if A is an eigenvalue of JQ, then so is — A,
A*, and —A*, and it is possible to construct a real,
invariant space, denoted by I,, as the union of the
eigenspaces of the quadruple of eigenvalues (A, — A, A*, —
A*). Moreover, I, is a symplectic subspace and motion on
it is governed by the restricted quadratic Hamiltonian
denoted H|I, (see McKay [26] for further details). A real
symplectic vector space with a given quadratic form H can
be decomposed into a direct sum of real symplectic sub-
spaces, I, so that the form H is represented as the sum of
normal forms for H|I, on these subspaces.

By a suitable choice of coordinates in I,, the quadratic
form can be reduced to the sum of squares. The pair of
numbers of positive and negative squares is called the
signature of the quadratic form'* and it plays an important
role in the stability analysis of Hamiltonian systems. We
will designate the signature of H|I, by the two-tuple
sigy = (no. positive squares, no. negative squares). The
signature is said to be positive, negative, or mixed if,
respectively, the number of negative squares is zero, the
number of positive squares is zero, or both numbers are
nonzero. The signature of H, is (4,0), whereas H,, H,, H,
all have signature (2,2). MacKay [26] notes some interest-
ing properties related to the signature of Hamiltonian
systems. The concept of signature has important implica-
tions although it is not widely used in engineering circles.
Although it is, perhaps, most common to deal with Hamil-
tonians of positive signature, this situation is by no means
universal. The restricted three-body problem is a well-
known counterexample.'®

Example Revisited:

Consider the example of Section III and Case 4 in
particular. Recall that the linearized system has eigenval-
ues + jo, w=(15)% each with algebraic multiplicity
two and geometric multiplicity one. Furthermore, the lin-
earized system can be put in the first-order form

= Ay, A=[_0K é] y=[2]. 4.7)

Suppose that the generalized eigenvectors of A correspond-
ing to A= jw are h=a+ jb, g=c+ jd with a,b,
¢, d real vectors. Define the transformation matrix

"This definition is due to MacKay [26]. An equivalent definition is
given by Moser [27]. Gantmacher [28, chap. 10], defines the signature of a
quadratic form as the difference between the number of positive and the
number of negative squares.

BMoser {32, sect. Szﬂ comments on precisely this point.
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T=[a b c d) Direct calculation verifies that
—1 - "’J2 I 2
AT [ 0 ol
which corresponds to the Hamiltonian (4.6b). If we use the

transformation matrix T=[a —b ¢ — d] theresulting
system corresponds to (4.6a).

(4.8)

4.3. Universal Perturbations of Quadratic Hamiltonians

A generic individual Hamiltonian system does not have
multiple eigenvalues. On the other hand, multiple eigenval-
ues do occur stably in parameterized families of
Hamiltonian systems. Two questions arise: what are the
generic multiplicities to be found in a k-parameter family
of Hamiltonian systems? and what is the universal pertur-
bation (unfolding) associated with a given degeneracy?
Some results along these lines, again due to Galin, are
noted by Arnold [10], [21].

The main purpose of this section is to show that the
Hamiltonians (4.5) occur generically in three parameter
families of quadratic Hamiltonians, whereas those of (4.6)
occur generically in one parameter families and to deter-
mine the universal perturbations which characterize neigh-
boring Hamiltonians. Once having done this, we will show
that perturbations of H, remain stable. That is, the eigen-
values remain on the imaginary axis for arbitrary small
perturbations. As will be shown this is not true of the
others, perturbations of which can result in quartets of
complex eigenvalues with nonzero real parts. Thus we
expect to see bifurcations at equilibria characterized by the
degenerate Hamiltonians of (4.5b) and (4.6).

Our approach is as follows. We consider a degenerate
Hamiltonian, Hy(y)=(1/2)y'Q,y, such as those of 4.5)
or (4.6), and add to it arbitrary “small” perturbations of
the form 8H = (1/2)y'8Qy. Some of these Hamiltonians
are equivalent to H, in the sense that they can be gener-
ated from it by a symplectic change of coordinates. Others
are not. Alternatively, perturbations which produce equiva-
lent Hamiltonians are removable by a symplectic change
of coordinates. The others are nonremovable. We wish to
characterize those (nonremovable) perturbations which
produce Hamiltonians that are not equivalent to Hy. Con-
sider infinitesimal generalized symplectic transformations
of the form T =1I + 8T. The action of such a transforma-
tion on H, produces

1
Hy(Tz) = Ez’(l +8T) Qy(I+8T)z

= %zf{ 00+ (8T'Qy+ QAT ) +0(2)} 2. (4.9)

Thus Hamiltonians equivalent to H, correspond to pertur-
bations of the form 80 = (8T'Q, + Q8T) + O(2). Because
T is symplectic, the class of admissible infinitesimal trans-
formations, 87, is restricted by (4.4). Thus

(I+8T) J(I+8T)=J+8TJ+J8T+0O(8T*) =cJ

LEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 12, DECEMBER 1989

so that
TJ+JT,= (c-1)J (4.10)

where T, denotes the first-order approximation of 8T. A
simple calculation shows that (4.10) implies that T is of

the form
A B
Tl_[C —A’+yI]

B=B', C=C,
Thus if we partition @, in the form
ot}
the removable perturbation can be obtained
RA+SC RB+S(—A'+vI)
1T [S’A+VC S'B +V(—A‘+yI)]

y=c-1. (4.11)

], R=R', V=V' (412)

AR+ CS' AS+CV
* [BR+(——A‘+yI)S’ BS+(-4 +yI)V]' (413)

We are now in a position to prove the following theorem.

Theorem 4.1: The Hamiltonians H; and H, defined in
(4.5) occur generically in three parameter families and
their general perturbations (universal unfoldings) may be
expressed

8H, = pu\gy Py + B2 P1 P2+ B3P3

SHy=pmq,pr + 12 P11 P2+ FaP%-

The Hamiltonians H, and H, of (4.6) occur generically in
one-parameter families and their general perturbations may
be expressed

0H, = pq3
8H,=pq;. .
Proof: Note that we can write the Hamiltonian sys-
tems of (4.5) in the form of (4.3) by identifying

Q= [wZE

0 _|1 0 _
0 E]’ whereE—[O p] and p==+1

(4.14)

for (4.5a) or (4.5b), respectively. Then using (4.21), remov-
able perturbations take the form:

w*(A'E + EA)
Y| (CE + v*EB)’

_ [Qu Q12}

Q{2 Q22
where A is an arbitrary, real 2X2 matrix, B and C are
arbitrary symmetric 2X2 matrices and vy is an arbitrary
real number (y #1). It follows that Q,; may be specified
as an arbitrary symmetric matrix, Q, may be arbitrarily

specified except for either one of its off diagonal elements,
and one of the diagonal elements of symmetric matrix. Q,,

(CE + «*EB)
—(AE + EA')+YE

(4.15)
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may be specified. It follows that the general nonremovable
perturbation of Q, may be chosen as

0 0 0

' 0 0 0 o0
80=| 0 0 (4.16)

b 0 py 2p

Thus H, and H, occur generically in three-parameter
families of the form

1
Hy= > {(p}+ o'qt) +(p} + w'g3)}

+ @1 Py+ B P1 Pyt RaP) (4.17a)
Hy= (9 + oiad) - (1 + oad))

+G1 Py + B2 PPy + B3PS (4.17b)

‘In the case of the Hamiltonians (4.6a) and (4.6b), we have

Q0=[_(i,1 ";ﬂ p=%1.  (4.18)

Upon application of (4.13)

0 w(JC—-CT) w(4T—JA") +pC+wy]
Yl o(4J—- JA) +pC-wy]  w(BI-JB)—p(A+A4")
On Qn»
= . 4.19
[Qiz sz] ( )

Since A is an arbitrary, real 2X2 matrix, B and C are
arbitrary symmetric 2 X2 matrices, and y is an arbitrary
real number (y #1), it is not difficult to argue that Q,,
may be specified as an arbitrary 2X2 symmetric matrix,
Q,, may be specified as an arbitrary 2 X2 matrix and the
2X2 symmetric matrix Q,, may be arbitrarily specified
except for precisely one of the diagonal elements. It fol-
lows that the general nonremovable perturbation of Q,
may be chosen as

0 0 0 0

0 2 0 0
= 4.
%=1y 0 0 o (4.20)

0 0 0 0

so that
1

Hy=>(pi+p3)+o(qp - q:p)+eal  (421)

1
H,=- 5(1)3 +p3)+w(q,p,— 4,p1) + Bq3. (4.21b)

Remark on the Associated Lagrangian System:

Some further insight into the physical meaning of the
Hamiltonians (4.5), (4.6), (4.17), and (4.21) may be ob-
tained by computing the equivalent Lagrangian dynamical
system. For example, applying the standard Legendre
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transformation to (4.21a) leads to the Lagrangian

1 1
L(4,q) =5 (@ +0a:)*+ 3 (42— 0a)'~pad (422)
0 1|4
+2w[_1 0][(}.2]

+w2[_01 _leH][Z:]=[g]. (4.23)

Incipient flutter instability corresponds to g = 0, and (4.23)
is stable for p > 0 and unstable for p < 0. Notice that this
system corresponds to a pair of unstable oscillators which
are gyroscopically coupled, and thereby stabilized if p > 0.
We may also easily compute the Jacobi first integral

4
3

1 1
E(4,q) = 54i + 545~ o’qf —(0*~2u)q;. (424)

Thus we readily see from either (4.21a) or (4.24) that
energy is not a sign definite function.
V. FIRST INTEGRALS AND STABILITY
5.1. Stability Under Parameter Variations
The key observation is the following.
Theorem 5.1: The origin of the Hamiltonian system (4.3)
can lose stability under parameter variations by collision

of a pair of eigenvalues at a point jw # 0 if and only if
H|I,, has mixed signature.

Proof: Stability properties under parameter variations
may be analyzed directly by considering the characteristic
polynomials associated with the dynamical systems de-
fined by the Hamiltonians of (4.18) and (4.23). The charac-
teristic polynomial associated with (4.18) is

a(s) =s*+20*(1+ pp;)s?
+(co4 +pwt(— pl— W +2w2u3)) (51)

where p = + 1. From (5.1) we obtain the eigenvalues

52 =— 0?1+ pp;) £ J0'pd + pe?(u2 + o%3) . (5:2)

It is clear from (5.2) that the nominal system, i.e., jp; = p,
=p, =0, has a pair of eigenvalues at + jw, and, further-
more, it can be destabilized by arbitrarily small perturba-
tions only for the case p= —1.

Similar calculations show that either of the nominal
systems of (4.23) can be destabilized vy arbitrarily small
variation of the single parameter, pu. Thus destabilization
can occur for arbitrarily small parameter variations only
for the cases of mixed signature. Various forms of this
result have been implicit in the work of many investigators
(McKay [26], Moser [27]). Analogous results for periodic
systems are more widely known (see, e.g. Hale [29, chap.
3]). The above result clearly illustrates the nonequivalence
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of the behavior of the Hamiltonian systems of (4.5) and
(4.6) under Hamiltonian perturbations.

5.2. Quadratic First Integrals

Stability analysis of Hamiltonian systems is often con-
ducted directly, based on Lyapunov theorems, by making
use of the fact that the Hamiltonian function is a first
integral of the equations (4.3). Direct computation verifies
the well-known fact that

g0 5.3
2H=0 (53)

It follows that a sufficient condition for stability is that H
is definite. The systems defined in (4.5), both of which are
stable (in fact they have the same equations of motion),
make it obvious that definiteness of H is not a necessary
condition for stability. If the Hamiltonian, or energy func-
tion, is not deéfinite it is still possible to identify “natural”
Lyapunov functions by combining with H other first inte-
grals associated with (4.3). This approach traces back to
Chetaev [30] and has been subsequently considered by
many investigators including Rubanovskii and Stepanov
[31]. We cite the latter because they present a clear exam-
ple of the application of this method to the study of
stability under variation of a number of parameters.

Any real scalar function ¢(y) which satisfies the condi-
tion ¢(y) = 0 along trajectories of (4.3) is a first integral of
(4.3). We will develop a parameterization of the quadratic
first integrals associated with (4.3). A quadratic first inte-
gral is of the form ¢ = y'®y, where ® is a real symmetric
matrix. A direct calculation shows that ¢ = 0 if and only if

(JO)'®+®(JQ)=0. (5.4)

We seek to characterize those mattices ® which satisfy
(5.4). Gantmacher [28] provides a complete analysis of the
equation

AD - ®B=0. (5.5)

The special case of interest here, 4= (J 0) and B=— 4,

A® +®A'=0 (5.6)

can be carried somewhat farther because of the Hamilto-
nian character of A. We follow the analysis of [28] to
prove the following theorem.

Theorem 5.2: A quadratic function ¢(y)=y'®y is a
first integral of the Hamiltonian system H(y)= y‘Qy if
and only if the real symmetric matrix @ is of the form

o =USU*

where U is the transformation matrix (to Jordan form) of
generalized eigenvectors of (JQ)’, and S is defined as
follows. S is partitioned into blocks S;;, i, j=1,---,p
compatible with the Jordan form of (JQ)" The only
nonzero blocks of S;; correspond to values of i and j for

which A, =A,. These nontrivial blocks, §;;, of dimension
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d; X d;, are of the form

a a a3 : ag
—a, —a, —a; 0

S;=1 43 . a,, =8,, ifd;=d,
j:ad,- 0 * M O

fd,<d, S;=[S; 0]andifd,>d, ;= [%’]

Proof: Note that if ® is any matrix which satisfies
(5.6), not necessarily real or symmetric, then its real sym-
metric part also satisfies (5.6). Thus we need: only show
that all solutions satisfying (5.6) are of the form stated in
the theorem. Let U denote the transformation matrix of
generalized eigenvectors of A so that

A=UAU!
where 4, is the Jordan form of A. Suppose that A has

precisely p Jordan blocks of dimensions d;,d,+ -+~ +d,
= 2n. It follows that
A, =diag(Jy, -, )
and
A'=VAV L, V-1=pPU".
P is the permutation matrix:
P =diag(Py,--, P,)
where P, is a d; X d; matrix of the form
' 0 -0 1
{0 -1 0
1 0-- 0
Now, (5.6) reduces to
A0 +34,=0 (5.7
where
o =UdV-'=UdPU". (5.8)

® can then be partitioned compatibly with 4, 1nto p?
blocks (D, GG =1, p), and (5.7) written as p? equa-
tions

J)\_til,+<f>ul =0, (5.9)
Repeating the calculations in [28] it can be shown that if
A #F— AthenQ—O If \j=—A, thend) is of a
pemal tnangular form If the block i 1s square, i. e d;=d,,

then

i’j=1,...’P'

aq, : a, 4 4
0 -—a,; —a; —a,
o, = - . a, ay |=T,. (5.10a)

:t‘adi
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Observe the alternating signs along the diagonals. If 4, < d;

§,=[0 T, (5.10b)
Ifd>d,
d,,= [%] (5.10c)
Note also that if d;=d, then
q a, a ’ ay,
—a, —a, —-a, O
[©P]ij=| a; : ay, : =S,
ta, 0 . . 0
(5.11a)
Ifd,<d,
[®P], =[S, O] (5.11b)
Ifd,>d,
[®P],;= [%’] (5.11¢)

Corollary 5.1: If JQ has no eigenvalues at the origin,
then the number of independent real symmetric matrices'®
of the form specified in Theorem 5.2 is

N= Z m,q; + E m;q;

ier iel,

where m, and ¢, are the algebraic and geometric multiplic-
ities, respectively, of the r distinct eigenvalues of JQ, I
denotes the index set of the (distinct) eigenvalues on the
" positive imaginary axis, and I, denotes the index set of the
(distinct) eigenvalues in the open right half plane.

Proof: Since A is real, its complex eigenvalues and cor-
responding generalized eigenvectors occur in conjugate
pairs. Furthermore, A is Hamiltonian so that eigenvalues
occur, with compatible multiplicities and Jordan blocks,
as: real pairs A, — A, imaginary pairs A,A*=—\, and
strictly complex quartets A, — A, A*, — A*. The real sym-
metric solutions @ of (5.6) are obtained if and only if the
following conditions hold: 1) if A,=—A, then S,;=§}
(which implies S, =5 ), 2) if A;=A¥, then §,;; =S¥, 3)if
A;=—A%, then §;;=(S;¥)"

Suppose A has precisely r distinct eigenvalues A, i=
1,---, r. Let m; denote the algebraic multiplicity of A, and
g; its geometric multiplicity. There exists an eigenvalue
— A, with precisely the same multiplicities. Thus, any
eigenvalue A and its associate — A each contribute ¢
Jordan blocks to A4; of dimension d,. For convenience
consider A; =X\ and A, =—A. Accordingly, this pair of

eigenvalues produces g nontrivial blocks S, ,» of dimen-

'®Note that the number of independent matrices characterized herein is
not the same as the number of independent quadratic first integrals. The
latter is typically smaller and never greater. This is because the vector
fields generated by the gradients of two quadratic first integrals may not
be independent even though the matrices defining the quadratic forms are
themselves independent.
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sion d;Xd;, i=1,---,q and j=q+1,---,29, and a com-
panion set with i=g+1,---,2¢ and j=1,---,4. Note
that d,+ --- +d,=m. Each block contains min(d;,d))
parameters. Moreover, these parameters are arbitrary ex-
cept that S;;=S;. (or (§;F)" if A is pure imaginary). It
follows that the number of independent constants (com-
plex in the event A is complex) associated with the pair of
eigenvalues A, — A is

9 q
Ny= Z
i=1j

min (d;,d;).
1

Assume, without any loss in generality, that the blocks are

ordered via size, so that d; <d,< --- <d,. Then
q [ i q
Ny = Z Z dj+ Z d;
i=1\j=1 j=i+l

9 [ q q
-£(La)-[Lafomm
i=1\j=1 i=1

If A is strictly complex, then there is a corresponding
and distinct pair of eigenvalues A* and — A*, but these
contribute constants which are simply the complex conju-
gates of those of A. Each such complex constant corre-
sponds to two independent real constants and hence if A is
complex we may associate N, real constants with A and an
equal number of real constants with A*. It follows that the
number of independent, real, symmetric solutions of (5.6)
is
N= Z m;q; + Z m;q,.

iel iel,

(5.12)

We now consider two examples of the application of these
results, corresponding to the Hamiltonians (4.5) and (4.6a).

Consider the Hamiltonian system (4.5). We will show
that it is possible to construct a positive definite quadratic
first integral, and hence a Lyapunov function for either
Hamiltonian. In this case we have

0 0 1 0

0 0 0 p
Jo= - w? 0 0 0

0 -wp 0 0

The eigenvalues are + jw, each with algebraic and geomet-
ric multiplicity 2. The matrix of eigenvectors of (JQ)' is

1 0 1 0
0 1 0 1
—J J
U= —7 0 - 0
w w
—Jo Je
w w

0 0 a b
0 0 ¢ d
§= a* ¢ 0 0
b* d* 0 0
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where we have been mindful of the fact that real, symmet- As specified in Theorem 5.2 we compose the matrix
ric ® obtains only when S, = S if A\, = — A;and §;; =S}

if A;=A*. Thus we obtain 0 0 a b
s_|0 0o -b o0
a* ~b 0 0
Wa Wb 0 —wfp B* 0 0 0
2 2
o-Usu'=| @ ‘:’[‘; b b(;) , where we require S, =S/ if A,=—A, and §, =S¥ if

A, =A}. Thus we obtain
—wBp 0 bp d

0 0 o0 g8
a,b,d, B = arbitrary real constants. (5.13) ®=USU' = 0 0 -8 0
0 -8B a O0OFf
Upon comparison with Q, in (4.14) it is readily checked B 0 0 «

that the Hamiltonian is a first integral. Note that ® in .
(5-13) is easily made positive definite, for example choose @, B = arbitrary real constants. (5.14)
a,d >0 and b, B = 0. Thus we construct a Lyapunov func-
tion for either Hamiltonian system (4.5a) or (4.5b) from its
quadratic first integrals. This result may be somewhat
surprising for (4.5b) since, although this system is stable, it

Compare this result with Q, in (4.18). Observe that it is
not possible to choose a, 8 so that ® is definite.
Let us now consider the perturbed Hamiltonian (4.22):

is structurally unstable even when viewed within the class 0 0 0 w
of Hamiltonian systems. 0= 0 24 ~-w 0

We will construct the general quadratic first integral for 0 -wo p 0
the Hamiltonian (4.6a) and show that, as expected, a w 0 0 P

definite one does not exist. Then, we will examine the

general perturbation of (4.6a) as given by (4.21). It will be  which reduces to (4.6) when =0, for which the gen-
shown that a definite quadratic first integral does exist eral quadratic first integral is given by (5.14). Consider
(even though the Hamiltonian itself is not definite) when the situation in which p# 0. In this case, (JQ)’ has eigen-
the perturbed system is stable. For the case of Hamilto- values

nian (4.6a), we have

JQ:[_(;M —IwJ]'

N=—(w?+pp) £ o (46 +pp)] %

Notice that the eigenvalues are distinct and purely imagi-
nary if up>0 and sufficiently small. In this case the
The eigenvalues are + jw each having algebraic multiplic- system is stable. On the other hand, pp <0 results in an
ity two and geometric multiplicity one. Thus in accordance unstable system. We consider the former situation and set
with Corollary 5.1, we anticipate two independent matrices

®. The matrix of generalized eigenvectors of (JQ)' is also pp =€’

casily computed to be where ¢ is a small parameter. It follows that the eigenval-

01 0 1 ues are now given by
0 ;5 0 - 1
U=11 (j) 1 oj - A== jf(e)w, f(€)=1ic+562+0(e3).
0 -5 0
J J The matrix of eigenvectors is directly computed:
—je(l-e)u  je(l-€)o —je(1+e)w je(l1+e)w
€W €w €Ew €W
1 ‘ 1 ‘ 1 ‘ 1 ‘

U= 2 2 =3 ~3 |thot

We also obtain the general form of S

coosn
b

To oo
o-oo



KWATNY AND YU: FLUTTER INSTABILITY OF POWER NETWORKS 1555
and finally,
_ e
e (1-¢)’ 0 0 —ew(l—c)(l—z)
. €
0 €2w? cw(l—i) 0
®=USU'=4 2
€ €
S S :
2 2
1-¢)[1-+ 0 0 A
o3 =
] €
e (1+¢)? 0 0 (w(l+e)(l+—)—‘
€
0 €%w? —ew(1+z) 0
+B ¢ €\2 +h.o.t. (5.15)
o e[l [+ :
€ €\2
L:o.a(l-*—c)(l+5) 0 0 (1+E) |

where A= Re(a), B=Re(b) are arbitrary real constants.

Note that we recover the Hamiltonian (up to leading terms
in €) by choosing

1+¢)

D

(1-o?
2¢ )

2e

Furthermore, we can obtain a positive definite first inte-
gral by choosing

=l[ _i]”, B

A
2

This leads to

o

Y

8

€

(%)
—-_o O

[e=)

+0(). (5.16)
-0 0 0 1

The eigenvalues are seen to be ew?(1— €?), e%w?,1,1 plus
higher order terms in .

5.3. Remarks on the Construction of Lyapunov Functions

Given a power system with a regular, stable equilibrium
point it is of interest to characterize the extent of the
domain of attraction. Various methods have been devel-
oped based on the use of a Lyapunov function. As previ-
ously noted, the specification of a candidate Lyapunov
function often begins with some notion of an energy
function. The appropriate structure for the energy function
and hence the Lyapunov function is unclear for a power
system with loads. One possibility is to begin with a local
characterization of energy as a first approximation to the
Lyapunov function and then to refine it in an attempt to
obtain improved estimates of the relevant portions of the
stability boundary. Our results show that even the charac-
terization of local Lyapunov functions can be subtle.

Consider the linearized model in the form of (4.1),
repeated here

M5+ Kx=0 (5.17)

and assume that eigenvalues of (5.17) are jw,," - -, jw, and
are distinct. Then the equilibrium point is regular and
stable. Moreover, as described in Section IV, it is very easy
to construct an energy function using the symmetrizing
matrix, S. It was noted that the specification of S is not
unique and the significance of this fact is now apparent.
First, S may always be chosen to be positive definite and
the remaining nonuniqueness is a scaling issue. However, it
is also possible to associate the stable system with a sign
indefinite S which has the same meaning as the association
of (5.17) with a different and nonequivalent Hamiltonian.
Now, the energy function is not directly usable as a
Lyapunov function and it becomes necessary to construct
a suitable sign definite first integral for this purpose. Why
bother? If the Lyapunov function is to characterize the
true stability boundary with any fidelity we would antici-
pate that it should reflect the essential qualitative proper-
ties of the system. Certainly, if the system operates close to
a stability boundary in the parameter space we should
expect to capture that important property in the proposed
Lyapunov function.

The immediate clue that the system may be operating
close to a stability boundary is the proximity of the charac-
teristic frequencies. The theory developed herein addresses
the simplest case where a single pair of frequencies are
close enough to warrant concern. Higher order degenera-
cies may be studied by similar methods. Our suggestion is
that a degenerate system on the nearby stability boundary
should be located by adjusting system parameters. The
original system may then be imbedded in a parameterized
family associated with the degenerate system and this will
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naturally yield quadratic first integrals for use as candidate
Lyapunov functions. Thus we begin the construction with
a parameterized quadratic first integral which exhibits the
required behavior under parameter variations. Recall that
the degenerate Hamiltonians (4.6) are generic in one-
parameter families (i.e., 4.21) and these are sufficient for
situations such as Case 4 in the example of Section III.

VI. CONCLUSIONS

The results of Kwatny et al. [5] simply that once an
energy function has been obtained for a strongly stable
power system, smooth perturbations of this energy func-
tion do characterize all neighboring systems. Such a con-
clusion is incorrect for those exceptional systems which
may be stable but are not strongly stable. These excep-
tional systems are significant because they correspond to
points on the boundary of the domain of stable systems in
the parameter space.

In this paper we study undamped power systems at
points of incipient flutter instability, i.e., at equilibria
characterized by a conjugate pair of purely imaginary
eigenvalues of algebraic multiplicity 2 (the simplest case).
We show that such systems may be associated with four
nonequivalent energy functions (Hamiltonians). Moreover,
we derive the universal perturbations of these Hamiltoni-
ans and show that they are generic in one or three parame-
ter families of Hamiltonians. It is also shown that systems
associated with these Hamiltonians behave qualitatively
differently from each other under perturbations. In partic-
ular, it is possible for systems characterized by three of
these Hamiltonians (those of mixed signature) to lose
stability under perturbations, while the single Hamiltonian
of positive signature is not associated with a system which
will lose stability under perturbations.

These results allow us to provide a clear picture of the
mechanics of the instability mechanism, that is the transi-

tion from a stable to an unstable system. We see that the -

conventional paradigm of a classical power system as an
interconnection of simple oscillators is invalid near points
of flutter instability. The system behaves more like an
interconnection of gyroscopically coupled unstable oscilla-
tors. One implication of this is that stability behavior
cannot be explained by the potential energy function alone.

We also note that the Hamiltonians of mixed signature
associated with perturbations of these systems cannot be
used as Lyapunov functions (because they are indefinite)
even if the system is stable. In this case we demonstrate
that it is possible to construct the general quadratic first
integral and to find one which does serve as a “natural”
Lyapunov function. Our results provide a method of con-
struction which yields all quadratic first integrals associ-
ated with a linear Hamiltonian system.

The significance of a natural Lyapunov function is that
it does facilitate the characterization of power system
stability domains both in the state space and the parameter
space. Modern power system operational issues (e.g., volt-
age collapse) are linked to parametric loss of stability. Our
analysis, although local, serves to clarify questions of exis-
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tence or nonexistence of energy functions for power sys-
tems with loads. We show that local energy functions do
exist, in a sense consistent with the inverse problem of
analytical mechanics, even near points of flutter instability.
Unfortunately, the energy function itself may not be a
Lyapunov function so that it is necessary to combine other
first integrals with energy in order to construct one.

These results are significant because power systems are
increasingly required to operate near stability limits. Thus
it is necessary to develop tools tailored to the analysis of
system stability near these limits. Our results explain how
conventional energy methods must be modified in order to
capture the essential features of flutter instability. We
might note that the somewhat less subtle divergence insta-
bility can easily be incorporated within the framework
described herein. The key element in this approach is the
embedding of the linearized system into an appropriate,
parameterized family which exhibits the instability mech-
anism. In this way we obtain candidate (quadratic)
Lyapunov functions which consistently portray the insta-
bility mechanism. Such local Lyapunov functions may be
extended in order to obtain improved estimates of the
domain of attraction.
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